Import gx, PadClamp, rest of mtx, TRK 2.6 and MSL (#525)

* Match mtx and Padclamp.c

* Match the rest of GX

* Import TRK 2.6

* Import MSL headers and files

* Merge some MSL headers into ours
This commit is contained in:
dbalatoni13 2025-01-12 15:11:23 +01:00 committed by GitHub
parent a79294aac0
commit cdb1d1fc37
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
113 changed files with 11219 additions and 394 deletions

View file

@ -6,15 +6,15 @@
#include <dolphin/gx/GXPriv.h>
static OSThread *__GXCurrentThread;
static struct __GXFifoObj* CPUFifo;
static struct __GXFifoObj* GPFifo;
static OSThread* __GXCurrentThread;
static GXBool CPGPLinked;
static BOOL GXOverflowSuspendInProgress;
static GXBreakPtCallback BreakPointCB;
static u32 __GXOverflowCount;
struct __GXFifoObj *CPUFifo;
struct __GXFifoObj *GPFifo;
void *__GXCurrentBP;
void* __GXCurrentBP;
static void __GXFifoReadEnable(void);
static void __GXFifoReadDisable(void);
@ -38,10 +38,10 @@ static void GXUnderflowHandler(s16 interrupt, OSContext *context)
{
ASSERTLINE(0x1A3, GXOverflowSuspendInProgress);
OSResumeThread(__GXCurrentThread);
GXOverflowSuspendInProgress = FALSE;
__GXWriteFifoIntReset(1U, 1U);
__GXWriteFifoIntEnable(1U, 0U);
OSResumeThread(__GXCurrentThread);
GXOverflowSuspendInProgress = FALSE;
__GXWriteFifoIntReset(1U, 1U);
__GXWriteFifoIntEnable(1U, 0U);
}
#define SOME_SET_REG_MACRO(reg, size, shift, val) \
@ -51,17 +51,17 @@ static void GXUnderflowHandler(s16 interrupt, OSContext *context)
static void GXBreakPointHandler(s16 interrupt, OSContext *context)
{
OSContext exceptionContext;
OSContext exceptionContext;
SOME_SET_REG_MACRO(gx->cpEnable, 1, 5, 0);
GX_SET_CP_REG(1, gx->cpEnable);
if (BreakPointCB != NULL) {
OSClearContext(&exceptionContext);
OSSetCurrentContext(&exceptionContext);
BreakPointCB();
OSClearContext(&exceptionContext);
OSSetCurrentContext(context);
}
gx->cpEnable = gx->cpEnable & 0xFFFFFFDF;
__cpReg[1] = gx->cpEnable;
if (BreakPointCB != NULL) {
OSClearContext(&exceptionContext);
OSSetCurrentContext(&exceptionContext);
BreakPointCB();
OSClearContext(&exceptionContext);
OSSetCurrentContext(context);
}
}
static void GXCPInterruptHandler(s16 interrupt, OSContext *context)

View file

@ -291,26 +291,25 @@ f32 GXGetYScaleFactor(u16 efbHeight, u16 xfbHeight)
u32 GXSetDispCopyYScale(f32 vscale)
{
u8 enable;
u32 iScale;
u32 ht;
u32 reg;
u32 scale;
GXBool check;
u32 height;
u32 reg;
CHECK_GXBEGIN(0x615, "GXSetDispCopyYScale");
scale = (u32)(256.0f / vscale) & 0x1FF;
check = (scale != 0x100);
ASSERTMSGLINE(0x617, vscale >= 1.0f, "GXSetDispCopyYScale: Vertical scale must be >= 1.0");
reg = 0;
SET_REG_FIELD(0, reg, 9, 0, scale);
SET_REG_FIELD(0, reg, 8, 24, 0x4E);
GX_WRITE_RAS_REG(reg);
gx->bpSentNot = GX_FALSE;
iScale = (u32)(256.0f / vscale) & 0x1FF;
enable = (iScale != 256);
SET_REG_FIELD(0, gx->cpDisp, 1, 10, check);
reg = 0;
SET_REG_FIELD(0x61E, reg, 9, 0, iScale);
SET_REG_FIELD(0x61E, reg, 8, 24, 0x4E);
GX_WRITE_RAS_REG(reg);
gx->bpSentNot = 0;
SET_REG_FIELD(0x623, gx->cpDisp, 1, 10, enable);
ht = GET_REG_FIELD(gx->cpDispSize, 10, 10) + 1;
return __GXGetNumXfbLines(ht, iScale);
height = (gx->cpDispSize >> 10 & 0x3FF) + 1;
return __GXGetNumXfbLines(height, scale);
}
void GXSetCopyClear(GXColor clear_clr, u32 clear_z)

View file

@ -65,150 +65,134 @@ static GXTlutRegion *__GXDefaultTlutRegionCallback(u32 idx)
GXFifoObj FifoObj;
GXFifoObj *GXInit(void *base, u32 size)
GXFifoObj* GXInit(void* base, u32 size)
{
u32 i;
u32 reg;
u32 freqBase;
u32 i;
u32 reg;
u32 freqBase;
char stack_padding[8];
// OSRegisterVersion(__GXVersion);
gx->inDispList = FALSE;
gx->dlSaveContext = TRUE;
gx->inDispList = FALSE;
gx->dlSaveContext = TRUE;
// gx->abtWaitPECopy = 1;
#if DEBUG
__GXinBegin = FALSE;
#endif
gx->tcsManEnab = FALSE;
gx->tevTcEnab = FALSE;
GXSetMisc(GX_MT_XF_FLUSH, 0);
gx->tcsManEnab = FALSE;
gx->tevTcEnab = 0;
GXSetMisc(GX_MT_XF_FLUSH, 0);
__piReg = OSPhysicalToUncached(0xC003000);
__cpReg = OSPhysicalToUncached(0xC000000);
__peReg = OSPhysicalToUncached(0xC001000);
__memReg = OSPhysicalToUncached(0xC004000);
__GXFifoInit();
GXInitFifoBase(&FifoObj, base, size);
GXSetCPUFifo(&FifoObj);
GXSetGPFifo(&FifoObj);
__GXPEInit();
EnableWriteGatherPipe();
__piReg = OSPhysicalToUncached(0xC003000);
__cpReg = OSPhysicalToUncached(0xC000000);
__peReg = OSPhysicalToUncached(0xC001000);
__memReg = OSPhysicalToUncached(0xC004000);
// __GXFifoInit();
// GXInitFifoBase(&FifoObj, base, size);
// GXSetCPUFifo(&FifoObj);
// GXSetGPFifo(&FifoObj);
gx->genMode = 0;
SET_REG_FIELD(0, gx->genMode, 8, 24, 0);
gx->bpMask = 255;
SET_REG_FIELD(0, gx->bpMask, 8, 24, 0x0F);
gx->lpSize = 0;
SET_REG_FIELD(0, gx->lpSize, 8, 24, 0x22);
for (i = 0; i < 16; ++i) {
gx->tevc[i] = 0;
gx->teva[i] = 0;
gx->tref[i / 2] = 0;
gx->texmapId[i] = GX_TEXMAP_NULL;
SET_REG_FIELD(0x2F2, gx->tevc[i], 8, 24, 0xC0 + i * 2);
SET_REG_FIELD(0x2F3, gx->teva[i], 8, 24, 0xC1 + i * 2);
SET_REG_FIELD(0x2F5, gx->tevKsel[i / 2], 8, 24, 0xF6 + i / 2);
SET_REG_FIELD(0x2F7, gx->tref[i / 2], 8, 24, 0x28 + i / 2);
}
gx->iref = 0;
SET_REG_FIELD(0, gx->iref, 8, 24, 0x27);
for (i = 0; i < 8; ++i) {
gx->suTs0[i] = 0;
gx->suTs1[i] = 0;
SET_REG_FIELD(0x300, gx->suTs0[i], 8, 24, 0x30 + i * 2);
SET_REG_FIELD(0x301, gx->suTs1[i], 8, 24, 0x31 + i * 2);
}
SET_REG_FIELD(0, gx->suScis0, 8, 24, 0x20);
SET_REG_FIELD(0, gx->suScis1, 8, 24, 0x21);
SET_REG_FIELD(0, gx->cmode0, 8, 24, 0x41);
SET_REG_FIELD(0, gx->cmode1, 8, 24, 0x42);
SET_REG_FIELD(0, gx->zmode, 8, 24, 0x40);
SET_REG_FIELD(0, gx->peCtrl, 8, 24, 0x43);
SET_REG_FIELD(0, gx->cpTex, 2, 7, 0);
gx->dirtyState = 0;
gx->dirtyVAT = FALSE;
// if (!resetFuncRegistered) {
// OSRegisterResetFunction(&GXResetFuncInfo);
// resetFuncRegistered = 1;
// }
freqBase = __OSBusClock / 500;
__GXFlushTextureState();
reg = (freqBase >> 11) | 0x400 | 0x69000000;
GX_WRITE_RAS_REG(reg);
// __GXPEInit();
// EnableWriteGatherPipe();
__GXFlushTextureState();
reg = (freqBase / 0x1080) | 0x200 | 0x46000000;
GX_WRITE_RAS_REG(reg);
gx->genMode = 0;
SET_REG_FIELD(0, gx->genMode, 8, 24, 0);
gx->bpMask = 255;
SET_REG_FIELD(0, gx->bpMask, 8, 24, 0x0F);
gx->lpSize = 0;
SET_REG_FIELD(0, gx->lpSize, 8, 24, 0x22);
for (i = 0; i < 16; ++i) {
gx->tevc[i] = 0;
gx->teva[i] = 0;
gx->tref[i / 2] = 0;
gx->texmapId[i] = GX_TEXMAP_NULL;
SET_REG_FIELD(0x46A, gx->tevc[i], 8, 24, 0xC0 + i * 2);
SET_REG_FIELD(0x46B, gx->teva[i], 8, 24, 0xC1 + i * 2);
SET_REG_FIELD(0x46D, gx->tevKsel[i / 2], 8, 24, 0xF6 + i / 2);
SET_REG_FIELD(0x46F, gx->tref[i / 2], 8, 24, 0x28 + i / 2);
}
gx->iref = 0;
SET_REG_FIELD(0, gx->iref, 8, 24, 0x27);
for (i = 0; i < 8; ++i) {
gx->suTs0[i] = 0;
gx->suTs1[i] = 0;
SET_REG_FIELD(0x478, gx->suTs0[i], 8, 24, 0x30 + i * 2);
SET_REG_FIELD(0x479, gx->suTs1[i], 8, 24, 0x31 + i * 2);
}
SET_REG_FIELD(0, gx->suScis0, 8, 24, 0x20);
SET_REG_FIELD(0, gx->suScis1, 8, 24, 0x21);
SET_REG_FIELD(0, gx->cmode0, 8, 24, 0x41);
SET_REG_FIELD(0, gx->cmode1, 8, 24, 0x42);
SET_REG_FIELD(0, gx->zmode, 8, 24, 0x40);
SET_REG_FIELD(0, gx->peCtrl, 8, 24, 0x43);
SET_REG_FIELD(0, gx->cpTex, 2, 7, 0);
for (i = GX_VTXFMT0; i < GX_MAX_VTXFMT; i++) {
SET_REG_FIELD(0, gx->vatA[i], 1, 30, 1);
SET_REG_FIELD(0, gx->vatB[i], 1, 31, 1);
do {
s32 regAddr;
GX_WRITE_U8(GX_LOAD_CP_REG);
GX_WRITE_U8(i | 0x80);
GX_WRITE_U32(gx->vatB[i]);
regAddr = i - 12;
} while (0);
}
{
u32 reg1 = 0;
u32 reg2 = 0;
SET_REG_FIELD(0, reg1, 1, 0, 1);
SET_REG_FIELD(0, reg1, 1, 1, 1);
SET_REG_FIELD(0, reg1, 1, 2, 1);
SET_REG_FIELD(0, reg1, 1, 3, 1);
SET_REG_FIELD(0, reg1, 1, 4, 1);
SET_REG_FIELD(0, reg1, 1, 5, 1);
GX_WRITE_XF_REG(0, reg1);
SET_REG_FIELD(0, reg2, 1, 0, 1);
GX_WRITE_XF_REG(0x12, reg2);
}
{
u32 reg = 0;
SET_REG_FIELD(0, reg, 1, 0, 1);
SET_REG_FIELD(0, reg, 1, 1, 1);
SET_REG_FIELD(0, reg, 1, 2, 1);
SET_REG_FIELD(0, reg, 1, 3, 1);
SET_REG_FIELD(0, reg, 8, 24, 0x58);
GX_WRITE_RAS_REG(reg);
}
for (i = 0; i < 8; i++)
GXInitTexCacheRegion(&gx->TexRegions[i], 0, i * 0x8000, 0,
0x80000 + i * 0x8000, 0);
for (i = 0; i < 4; i++)
GXInitTexCacheRegion(&gx->TexRegionsCI[i], 0, (i * 2 + 8) * 0x8000, 0,
(i * 2 + 9) * 0x8000, 0);
for (i = 0; i < 16; i++)
GXInitTlutRegion(&gx->TlutRegions[i], 0xC0000 + i * 0x2000, 16);
for (i = 0; i < 4; i++)
GXInitTlutRegion(&gx->TlutRegions[i + 16], 0xE0000 + i * 0x8000, 64);
__cpReg[3] = 0;
// gx->zScale = 1.6777216E7f;
// gx->zOffset = 0.0f;
gx->dirtyState = 0;
gx->dirtyVAT = FALSE;
#if DEBUG
__gxVerif->verifyLevel = GX_WARN_NONE;
GXSetVerifyCallback((GXVerifyCallback)__GXDefaultVerifyCallback);
for (i = 0; i < 256; i++) {
SET_REG_FIELD(0, __gxVerif->rasRegs[i], 8, 24, 0xFF);
}
memset(__gxVerif->xfRegsDirty, 0, 0x50);
memset(__gxVerif->xfMtxDirty, 0, 0x100);
memset(__gxVerif->xfNrmDirty, 0, 0x60);
memset(__gxVerif->xfLightDirty, 0, 0x80);
#endif
freqBase = __OSBusClock / 500;
// __GXFlushTextureState();
reg = (freqBase >> 11) | 0x400 | 0x69000000;
GX_WRITE_RAS_REG(reg);
{
SET_REG_FIELD(0, gx->perfSel, 4, 4, 0);
GX_WRITE_U8(GX_LOAD_CP_REG);
GX_WRITE_U8(0x20);
GX_WRITE_U32(gx->perfSel);
GX_WRITE_U8(GX_LOAD_XF_REG);
GX_WRITE_U32(0x1006);
GX_WRITE_U32(0);
GX_WRITE_RAS_REG(0x23000000);
GX_WRITE_RAS_REG(0x24000000);
GX_WRITE_RAS_REG(0x67000000);
}
// __GXFlushTextureState();
reg = (freqBase / 0x1080) | 0x200 | 0x46000000;
GX_WRITE_RAS_REG(reg);
// __GXInitRevisionBits();
// for (i = 0; i < 8; i++) {
// GXInitTexCacheRegion(&gx->TexRegions0[i], GX_FALSE, GXTexRegionAddrTable[i],
// GX_TEXCACHE_32K, GXTexRegionAddrTable[i + 8], GX_TEXCACHE_32K);
// GXInitTexCacheRegion(&gx->TexRegions1[i], GX_FALSE, GXTexRegionAddrTable[i + 16],
// GX_TEXCACHE_32K, GXTexRegionAddrTable[i + 24], GX_TEXCACHE_32K);
// GXInitTexCacheRegion(&gx->TexRegions2[i], GX_TRUE, GXTexRegionAddrTable[i + 32],
// GX_TEXCACHE_32K, GXTexRegionAddrTable[i + 40], GX_TEXCACHE_32K);
// }
// for (i = 0; i < 16; i++) {
// GXInitTlutRegion(&gx->TlutRegions[i], 0xC0000 + 0x2000 * i, GX_TLUT_256);
// }
// for (i = 0; i < 4; i++) {
// GXInitTlutRegion(&gx->TlutRegions[i + 16], 0xE0000 + 0x8000 * i, GX_TLUT_1K);
// }
{
u32 reg = 0;
#if DEBUG
s32 regAddr;
#endif
GX_SET_CP_REG(3, reg);
SET_REG_FIELD(0, gx->perfSel, 4, 4, 0);
GX_WRITE_U8(0x8);
GX_WRITE_U8(0x20);
GX_WRITE_U32(gx->perfSel);
#if DEBUG
regAddr = -12;
#endif
reg = 0;
GX_WRITE_XF_REG(6, reg);
reg = 0x23000000;
GX_WRITE_RAS_REG(reg);
reg = 0x24000000;
GX_WRITE_RAS_REG(reg);
reg = 0x67000000;
GX_WRITE_RAS_REG(reg);
}
__GXSetIndirectMask(0);
__GXSetTmemConfig(2);
__GXInitGX();
return &FifoObj;
__GXSetTmemConfig(0);
__GXInitGX();
return &FifoObj;
}
void __GXInitGX()

View file

@ -3,6 +3,8 @@
static f32 Unit01[] = { 0.0f, 1.0f };
extern f32 sinf(f32);
extern f32 cosf(f32);
extern f32 tanf(f32);
void C_MTXIdentity(Mtx mtx)
{
@ -648,12 +650,12 @@ void C_MTXRotRad(Mtx m, char axis, f32 rad)
#ifdef GEKKO
void PSMTXRotRad(Mtx m, char axis, f32 rad)
{
// f32 sinA, cosA;
f32 sinA, cosA;
// sinA = sinf(rad);
// cosA = cosf(rad);
sinA = sinf(rad);
cosA = cosf(rad);
// PSMTXRotTrig(m, axis, sinA, cosA);
PSMTXRotTrig(m, axis, sinA, cosA);
}
#endif
@ -717,68 +719,63 @@ void C_MTXRotTrig(Mtx m, char axis, f32 sinA, f32 cosA)
#ifdef GEKKO
void PSMTXRotTrig(register Mtx m, register char axis, register f32 sinA, register f32 cosA)
{
// register f32 fc0, fc1, nsinA;
// register f32 fw0, fw1, fw2, fw3;
// // clang-format off
// asm
// {
// frsp sinA, sinA
// frsp cosA, cosA
// }
register f32 fc0, fc1, nsinA;
register f32 fw0, fw1, fw2, fw3;
// clang-format off
// fc0 = 0.0F;
// fc1 = 1.0F;
// asm
// {
// ori axis, axis, 0x20
// ps_neg nsinA, sinA
// cmplwi axis, 'x'
// beq _case_x
// cmplwi axis, 'y'
// beq _case_y
// cmplwi axis, 'z'
// beq _case_z
// b _end
fc0 = 0.0F;
fc1 = 1.0F;
asm
{
ori axis, axis, 0x20
ps_neg nsinA, sinA
cmplwi axis, 'x'
beq _case_x
cmplwi axis, 'y'
beq _case_y
cmplwi axis, 'z'
beq _case_z
b _end
// _case_x:
// psq_st fc1, 0(m), 1, 0
// psq_st fc0, 4(m), 0, 0
// ps_merge00 fw0, sinA, cosA
// psq_st fc0, 12(m), 0, 0
// ps_merge00 fw1, cosA, nsinA
// psq_st fc0, 28(m), 0, 0
// psq_st fc0, 44(m), 1, 0
// psq_st fw0, 36(m), 0, 0
// psq_st fw1, 20(m), 0, 0
// b _end;
_case_x:
psq_st fc1, 0(m), 1, 0
psq_st fc0, 4(m), 0, 0
ps_merge00 fw0, sinA, cosA
psq_st fc0, 12(m), 0, 0
ps_merge00 fw1, cosA, nsinA
psq_st fc0, 28(m), 0, 0
psq_st fc0, 44(m), 1, 0
psq_st fw0, 36(m), 0, 0
psq_st fw1, 20(m), 0, 0
b _end;
// _case_y:
// ps_merge00 fw0, cosA, fc0
// ps_merge00 fw1, fc0, fc1
// psq_st fc0, 24(m), 0, 0
// psq_st fw0, 0(m), 0, 0
// ps_merge00 fw2, nsinA, fc0
// ps_merge00 fw3, sinA, fc0
// psq_st fw0, 40(m), 0, 0;
// psq_st fw1, 16(m), 0, 0;
// psq_st fw3, 8(m), 0, 0;
// psq_st fw2, 32(m), 0, 0;
// b _end;
_case_y:
ps_merge00 fw0, cosA, fc0
ps_merge00 fw1, fc0, fc1
psq_st fc0, 24(m), 0, 0
psq_st fw0, 0(m), 0, 0
ps_merge00 fw2, nsinA, fc0
ps_merge00 fw3, sinA, fc0
psq_st fw0, 40(m), 0, 0;
psq_st fw1, 16(m), 0, 0;
psq_st fw3, 8(m), 0, 0;
psq_st fw2, 32(m), 0, 0;
b _end;
// _case_z:
// psq_st fc0, 8(m), 0, 0
// ps_merge00 fw0, sinA, cosA
// ps_merge00 fw2, cosA, nsinA
// psq_st fc0, 24(m), 0, 0
// psq_st fc0, 32(m), 0, 0
// ps_merge00 fw1, fc1, fc0
// psq_st fw0, 16(m), 0, 0
// psq_st fw2, 0(m), 0, 0
// psq_st fw1, 40(m), 0, 0
_case_z:
psq_st fc0, 8(m), 0, 0
ps_merge00 fw0, sinA, cosA
ps_merge00 fw2, cosA, nsinA
psq_st fc0, 24(m), 0, 0
psq_st fc0, 32(m), 0, 0
ps_merge00 fw1, fc1, fc0
psq_st fw0, 16(m), 0, 0
psq_st fw2, 0(m), 0, 0
psq_st fw1, 40(m), 0, 0
// _end:
// }
// // clang-format on
_end:
}
// clang-format on
}
#endif
@ -822,70 +819,58 @@ void C_MTXRotAxisRad(Mtx m, const Vec *axis, f32 rad)
}
#ifdef GEKKO
static void __PSMTXRotAxisRadInternal(register Mtx m, const register Vec *axis, register f32 sT, register f32 cT)
#define qr0 0
void PSMTXRotAxisRad(register Mtx m, const Vec *axis, register f32 rad)
{
register f32 tT, fc0;
register f32 tmp0, tmp1, tmp2, tmp3, tmp4;
register f32 tmp5, tmp6, tmp7, tmp8, tmp9;
tmp9 = 0.5F;
tmp8 = 3.0F;
// clang-format off
asm
{
frsp cT, cT
psq_l tmp0, 0(axis), 0, 0
frsp sT, sT
lfs tmp1, 8(axis)
ps_mul tmp2, tmp0, tmp0
fadds tmp7, tmp9, tmp9
ps_madd tmp3, tmp1, tmp1, tmp2
fsubs fc0, tmp9, tmp9
ps_sum0 tmp4, tmp3, tmp1, tmp2
fsubs tT, tmp7, cT
frsqrte tmp5, tmp4
fmuls tmp2, tmp5, tmp5
fmuls tmp3, tmp5, tmp9
fnmsubs tmp2, tmp2, tmp4, tmp8
fmuls tmp5, tmp2, tmp3
ps_merge00 cT, cT, cT
ps_muls0 tmp0, tmp0, tmp5
ps_muls0 tmp1, tmp1, tmp5
ps_muls0 tmp4, tmp0, tT
ps_muls0 tmp9, tmp0, sT
ps_muls0 tmp5, tmp1, tT
ps_muls1 tmp3, tmp4, tmp0
ps_muls0 tmp2, tmp4, tmp0
ps_muls0 tmp4, tmp4, tmp1
fnmsubs tmp6, tmp1, sT, tmp3
fmadds tmp7, tmp1, sT, tmp3
ps_neg tmp0, tmp9
ps_sum0 tmp8, tmp4, fc0, tmp9
ps_sum0 tmp2, tmp2, tmp6, cT
ps_sum1 tmp3, cT, tmp7, tmp3
ps_sum0 tmp6, tmp0, fc0 ,tmp4
psq_st tmp8, 8(m), 0, 0
ps_sum0 tmp0, tmp4, tmp4, tmp0
psq_st tmp2, 0(m), 0, 0
ps_muls0 tmp5, tmp5, tmp1
psq_st tmp3, 16(m), 0, 0
ps_sum1 tmp4, tmp9, tmp0, tmp4
psq_st tmp6, 24(m), 0, 0
ps_sum0 tmp5, tmp5, fc0, cT
psq_st tmp4, 32(m), 0, 0
psq_st tmp5, 40(m), 0, 0
register f32 sT;
register f32 cT;
register f32 oneMinusCosT;
register f32 zero;
Vec axisNormalized;
register Vec *axisNormalizedPtr;
zero = 0.0f;
axisNormalizedPtr = &axisNormalized;
sT = sinf(rad);
cT = cosf(rad);
oneMinusCosT = 1.0f - cT;
PSVECNormalize(axis, axisNormalizedPtr);
#ifdef __MWERKS__ // clang-format off
asm {
psq_l rad, 0x0(axisNormalizedPtr), 0, qr0
lfs tmp1, 0x8(axisNormalizedPtr)
ps_merge00 tmp0, cT, cT
ps_muls0 tmp4, rad, oneMinusCosT
ps_muls0 tmp5, tmp1, oneMinusCosT
ps_muls1 tmp3, tmp4, rad
ps_muls0 tmp2, tmp4, rad
ps_muls0 rad, rad, sT
ps_muls0 tmp4, tmp4, tmp1
fnmsubs tmp6, tmp1, sT, tmp3
fmadds tmp7, tmp1, sT, tmp3
ps_neg tmp9, rad
ps_sum0 tmp8, tmp4, zero, rad
ps_sum0 tmp2, tmp2, tmp6, tmp0
ps_sum1 tmp3, tmp0, tmp7, tmp3
ps_sum0 tmp6, tmp9, zero, tmp4
ps_sum0 tmp9, tmp4, tmp4, tmp9
psq_st tmp8, 0x8(m), 0, qr0
ps_muls0 tmp5, tmp5, tmp1
psq_st tmp2, 0x0(m), 0, qr0
ps_sum1 tmp4, rad, tmp9, tmp4
psq_st tmp3, 0x10(m), 0, qr0
ps_sum0 tmp5, tmp5, zero, tmp0
psq_st tmp6, 0x18(m), 0, qr0
psq_st tmp4, 0x20(m), 0, qr0
psq_st tmp5, 0x28(m), 0, qr0
}
// clang-format on
}
void PSMTXRotAxisRad(Mtx m, const Vec *axis, f32 rad)
{
// f32 sinT, cosT;
// sinT = sinf(rad);
// cosT = cosf(rad);
// __PSMTXRotAxisRadInternal(m, axis, sinT, cosT);
#endif // clang-format on
}
#endif
@ -1219,30 +1204,30 @@ void PSMTXReflect(register Mtx m, const register Vec *p, const register Vec *n)
void C_MTXLookAt(Mtx m, const Point3d *camPos, const Vec *camUp, const Point3d *target)
{
// Vec vLook, vRight, vUp;
Vec vLook, vRight, vUp;
// vLook.x = camPos->x - target->x;
// vLook.y = camPos->y - target->y;
// vLook.z = camPos->z - target->z;
// VECNormalize(&vLook, &vLook);
// VECCrossProduct(camUp, &vLook, &vRight);
// VECNormalize(&vRight, &vRight);
// VECCrossProduct(&vLook, &vRight, &vUp);
vLook.x = camPos->x - target->x;
vLook.y = camPos->y - target->y;
vLook.z = camPos->z - target->z;
VECNormalize(&vLook, &vLook);
VECCrossProduct(camUp, &vLook, &vRight);
VECNormalize(&vRight, &vRight);
VECCrossProduct(&vLook, &vRight, &vUp);
// m[0][0] = vRight.x;
// m[0][1] = vRight.y;
// m[0][2] = vRight.z;
// m[0][3] = -(camPos->x * vRight.x + camPos->y * vRight.y + camPos->z * vRight.z);
m[0][0] = vRight.x;
m[0][1] = vRight.y;
m[0][2] = vRight.z;
m[0][3] = -(camPos->x * vRight.x + camPos->y * vRight.y + camPos->z * vRight.z);
// m[1][0] = vUp.x;
// m[1][1] = vUp.y;
// m[1][2] = vUp.z;
// m[1][3] = -(camPos->x * vUp.x + camPos->y * vUp.y + camPos->z * vUp.z);
m[1][0] = vUp.x;
m[1][1] = vUp.y;
m[1][2] = vUp.z;
m[1][3] = -(camPos->x * vUp.x + camPos->y * vUp.y + camPos->z * vUp.z);
// m[2][0] = vLook.x;
// m[2][1] = vLook.y;
// m[2][2] = vLook.z;
// m[2][3] = -(camPos->x * vLook.x + camPos->y * vLook.y + camPos->z * vLook.z);
m[2][0] = vLook.x;
m[2][1] = vLook.y;
m[2][2] = vLook.z;
m[2][3] = -(camPos->x * vLook.x + camPos->y * vLook.y + camPos->z * vLook.z);
}
void C_MTXLightFrustum(Mtx m, float t, float b, float l, float r, float n, float scaleS, float scaleT, float transS, float transT)
@ -1269,28 +1254,28 @@ void C_MTXLightFrustum(Mtx m, float t, float b, float l, float r, float n, float
void C_MTXLightPerspective(Mtx m, f32 fovY, f32 aspect, float scaleS, float scaleT, float transS, float transT)
{
// f32 angle;
// f32 cot;
f32 angle;
f32 cot;
// angle = fovY * 0.5f;
// angle = MTXDegToRad(angle);
angle = fovY * 0.5f;
angle = MTXDegToRad(angle);
// cot = 1.0f / tanf(angle);
cot = 1.0f / tanf(angle);
// m[0][0] = (cot / aspect) * scaleS;
// m[0][1] = 0.0f;
// m[0][2] = -transS;
// m[0][3] = 0.0f;
m[0][0] = (cot / aspect) * scaleS;
m[0][1] = 0.0f;
m[0][2] = -transS;
m[0][3] = 0.0f;
// m[1][0] = 0.0f;
// m[1][1] = cot * scaleT;
// m[1][2] = -transT;
// m[1][3] = 0.0f;
m[1][0] = 0.0f;
m[1][1] = cot * scaleT;
m[1][2] = -transT;
m[1][3] = 0.0f;
// m[2][0] = 0.0f;
// m[2][1] = 0.0f;
// m[2][2] = -1.0f;
// m[2][3] = 0.0f;
m[2][0] = 0.0f;
m[2][1] = 0.0f;
m[2][2] = -1.0f;
m[2][3] = 0.0f;
}
void C_MTXLightOrtho(Mtx m, f32 t, f32 b, f32 l, f32 r, float scaleS, float scaleT, float transS, float transT)

View file

@ -1,3 +1,4 @@
#include "dolphin/math.h"
#include "dolphin/mtx.h"
float acosf(float x);
@ -5,6 +6,28 @@ float acosf(float x);
float sinf(float x);
float cosf(float x);
void C_QUATAdd(const Quaternion *p, const Quaternion *q, Qtrn *r)
{
r->x = p->x + q->x;
r->y = p->y + q->y;
r->z = p->z + q->z;
r->w = p->w + q->w;
}
void PSQUATAdd(register const Quaternion *p, register const Quaternion *q, register Quaternion *r)
{
asm {
psq_l f0, 0x0(r3), 0, 0
psq_l f1, 0x0(r4), 0, 0
ps_add f0, f0, f1
psq_st f0, 0x0(r5), 0, 0
psq_l f0, 0x8(r3), 0, 0
psq_l f1, 0x8(r4), 0, 0
ps_add f0, f0, f1
psq_st f0, 0x8(r5), 0, 0
}
}
void PSQUATMultiply(register const Quaternion *a, register const Quaternion *b, register Quaternion *ab)
{
asm {
@ -33,6 +56,77 @@ void PSQUATMultiply(register const Quaternion *a, register const Quaternion *b,
}
}
void PSQUATNormalize(const register Quaternion *src, register Quaternion *unit)
{
// sdata2
(void)0.00001f;
(void)0.0f;
(void)0.5;
(void)3.0;
(void)1.0f;
(void)0.5f;
(void)3.0f;
{
register f32 vv1, vv2, vv3;
register f32 vv4, vv5, vv6;
register f32 vv7, vv8;
register f32 vv9 = 0.00001f;
register f32 vvA = 0.5F;
register f32 vvB = 3.0F;
asm
{
psq_l vv1, 0(src), 0, 0;
ps_mul vv3, vv1, vv1;
psq_l vv2, 8(src), 0, 0;
ps_sub vv6, vv9, vv9;
ps_madd vv3, vv2, vv2, vv3;
ps_sum0 vv3, vv3, vv3, vv3;
frsqrte vv4, vv3;
ps_sub vv5, vv3, vv9;
fmul vv7, vv4, vv4;
fmul vv8, vv4, vvA;
fnmsub vv7, vv7, vv3, vvB;
fmul vv4, vv7, vv8;
ps_sel vv4, vv5, vv4, vv6;
ps_muls0 vv1, vv1, vv4;
ps_muls0 vv2, vv2, vv4;
psq_st vv1, 0(unit), 0, 0;
psq_st vv2, 8(unit), 0, 0;
}
}
}
void PSQUATInverse(const register Quaternion *src, register Quaternion *inv)
{
register f32 vv1, vv2, vv3, vv4;
register f32 vv5, vv6, vv7, vv8, vv9, vvA, vvB;
register f32 vvC = 1.0F;
asm {
psq_l vv1, 0(src), 0, 0;
ps_mul vv5, vv1, vv1;
psq_l vv2, 8(src), 0, 0;
ps_madd vv5, vv2, vv2, vv5;
ps_add vvA, vvC, vvC;
ps_sum0 vv5, vv5, vv5, vv5;
fres vv7, vv5;
ps_neg vv6, vv5;
ps_nmsub vv9, vv5, vv7, vvA;
ps_mul vv7, vv7, vv9;
ps_sel vv7, vv6, vvC, vv7
b loc1;
loc0:
fmr vv7, vvC;
loc1:
ps_neg vv8, vv7;
ps_muls1 vv4, vv7, vv2;
ps_muls0 vv1, vv1, vv8;
psq_st vv4, 12(inv), 1, 0;
ps_muls0 vv3, vv2, vv8;
psq_st vv1, 0(inv), 0, 0;
psq_st vv3, 8(inv), 1, 0;
}
}
void C_QUATRotAxisRad(Quaternion *q, const Vec *axis, f32 rad)
{
f32 tmp, tmp2, tmp3;
@ -52,6 +146,42 @@ void C_QUATRotAxisRad(Quaternion *q, const Vec *axis, f32 rad)
q->w = tmp3;
}
void C_QUATMtx(Quaternion *r, const Mtx m)
{
f32 vv0, vv1;
s32 i, j, k;
s32 idx[3] = { 1, 2, 0 };
f32 vec[3];
vv0 = m[0][0] + m[1][1] + m[2][2];
if (vv0 > 0.0f) {
vv1 = (f32)sqrtf(vv0 + 1.0f);
r->w = vv1 * 0.5f;
vv1 = 0.5f / vv1;
r->x = (m[2][1] - m[1][2]) * vv1;
r->y = (m[0][2] - m[2][0]) * vv1;
r->z = (m[1][0] - m[0][1]) * vv1;
}
else {
i = 0;
if (m[1][1] > m[0][0])
i = 1;
if (m[2][2] > m[i][i])
i = 2;
j = idx[i];
k = idx[j];
vv1 = (f32)sqrtf((m[i][i] - (m[j][j] + m[k][k])) + 1.0f);
vec[i] = vv1 * 0.5f;
if (vv1 != 0.0f)
vv1 = 0.5f / vv1;
r->w = (m[k][j] - m[j][k]) * vv1;
vec[j] = (m[i][j] + m[j][i]) * vv1;
vec[k] = (m[i][k] + m[k][i]) * vv1;
r->x = vec[0];
r->y = vec[1];
r->z = vec[2];
}
}
void C_QUATSlerp(const Quaternion *p, const Quaternion *q, Quaternion *r, f32 t)
{
f32 ratioA, ratioB;

View file

@ -210,23 +210,23 @@ void C_VECHalfAngle(const Vec *a, const Vec *b, Vec *half)
void C_VECReflect(const Vec *src, const Vec *normal, Vec *dst)
{
// Vec a0;
// Vec b0;
// f32 dot;
Vec a0;
Vec b0;
f32 dot;
// a0.x = -src->x;
// a0.y = -src->y;
// a0.z = -src->z;
a0.x = -src->x;
a0.y = -src->y;
a0.z = -src->z;
// VECNormalize(&a0, &a0);
// VECNormalize(normal, &b0);
VECNormalize(&a0, &a0);
VECNormalize(normal, &b0);
// dot = VECDotProduct(&a0, &b0);
// dst->x = b0.x * 2.0f * dot - a0.x;
// dst->y = b0.y * 2.0f * dot - a0.y;
// dst->z = b0.z * 2.0f * dot - a0.z;
dot = VECDotProduct(&a0, &b0);
dst->x = b0.x * 2.0f * dot - a0.x;
dst->y = b0.y * 2.0f * dot - a0.y;
dst->z = b0.z * 2.0f * dot - a0.z;
// VECNormalize(dst, dst);
VECNormalize(dst, dst);
}
asm f32 PSVECSquareDistance(register const Vec *a, register const Vec *b) {

View file

@ -103,17 +103,34 @@ static void ClampTrigger(u8 *trigger, u8 min, u8 max)
}
}
void PADClamp(PADStatus *status)
void PADClamp(PADStatus* status)
{
// int i;
// for (i = 0; i < PAD_CHANMAX; i++, status++) {
// if (status->err != PAD_ERR_NONE) {
// continue;
// }
int i;
for (i = 0; i < PAD_CHANMAX; i++, status++) {
if (status->err != PAD_ERR_NONE) {
continue;
}
// ClampStick(&status->stickX, &status->stickY, ClampRegion.maxStick, ClampRegion.xyStick, ClampRegion.minStick);
// ClampStick(&status->substickX, &status->substickY, ClampRegion.maxSubstick, ClampRegion.xySubstick, ClampRegion.minSubstick);
// ClampTrigger(&status->triggerL, ClampRegion.minTrigger, ClampRegion.maxTrigger);
// ClampTrigger(&status->triggerR, ClampRegion.minTrigger, ClampRegion.maxTrigger);
// }
ClampStick(&status->stickX, &status->stickY, ClampRegion.maxStick,
ClampRegion.xyStick, ClampRegion.minStick);
ClampStick(&status->substickX, &status->substickY,
ClampRegion.maxSubstick, ClampRegion.xySubstick,
ClampRegion.minSubstick);
if (status->triggerL <= ClampRegion.minTrigger) {
status->triggerL = 0;
} else {
if (ClampRegion.maxTrigger < status->triggerL) {
status->triggerL = ClampRegion.maxTrigger;
}
status->triggerL -= ClampRegion.minTrigger;
}
if (status->triggerR <= ClampRegion.minTrigger) {
status->triggerR = 0;
} else {
if (ClampRegion.maxTrigger < status->triggerR) {
status->triggerR = ClampRegion.maxTrigger;
}
status->triggerR -= ClampRegion.minTrigger;
}
}
}